Analysis of Pattern Occurances Course 1: Complexity Analysis of String Algorithms

Roland Aydin

Joint Advanced Student School 2004

Preliminaries

- Math or Mach?
- Abstract
- Markov sequence
- Markov chain
- Correlation of patterns
- Example
- Representation
- Autocorrelation
- Autocorrelation set
- Example
- Let's play a game

Sources

GF of languages

Declaring languages

Language relationships

Languages & GFs

Looking for GFs

Main findings I

On to other shores

Epilogue

Preliminaries

Math or Mach?

Preliminaries

• Math or Mach?

- Abstract
- Markov sequence
- Markov chain
- Correlation of patterns
- Example
- Representation
- Autocorrelation
- Autocorrelation set
- Example
- Let's play a game

Sources

GF of languages

Declaring languages

Language relationships

Languages & GFs

Looking for GFs

Main findings I

On to other shores

Epilogue

"It's relatively simple in its concept," said Griff Corpening, chief engineer for the X-43A program. "It's incredibly challenging in its execution.... [That is] where all those days of research come in."

Abstract

Preliminaries

Math or Mach?

Abstract

Markov sequence

Markov chain

Correlation of patterns

Example

Representation

Autocorrelation

Autocorrelation set

Example

Let's play a game

Sources

GF of languages

Declaring languages

Language relationships

Languages & GFs

Looking for GFs

Main findings I

On to other shores

Epilogue

One counts the number of occurrences of a given pattern H in a text of size n. This number is denoted $O_n(H)$.

Frequency analysis relies on the decomposition of the text T onto languages, the so-called initial, minimal, and tail languages.

Going from there to their generating functions both for a Markovian and a Bernoulli environment, it turns out the whole counting problem only depends on P(H) and the "correlation set".

Markov sequence

Preliminaries

- Math or Mach?
- Abstract

Markov sequence

- Markov chain
- Correlation of patterns
- Example
- Representation
- Autocorrelation
- Autocorrelation set
- Example
- Let's play a game

Sources

GF of languages

Declaring languages

Language relationships

Languages & GFs

Looking for GFs

Main findings I

On to other shores

Epilogue

A sequence $X_1, X_2, ...$ of random variates is called a *Markov* sequence of order 1 iff, for any n,

$$F(X_n|X_{n-1}, X_{n-2}, ...X_1) = F(X_n|X_{n-1})$$

i.e., if the conditional distribution F of X_n , assuming $X_{n-1}, X_{n-2}, ... X_1$

equals

the conditional distribution F of X_n assuming only X_{n-1} .

Markov chain

Preliminaries

Math or Mach?

Abstract

Markov sequence

Markov chain

Correlation of patterns

Example

Representation

Autocorrelation

Autocorrelation set

Example

Let's play a game

Sources

GF of languages

Declaring languages

Language relationships

Languages & GFs

Looking for GFs

Main findings I

On to other shores

Epilogue

If a Markov sequence of random variates X_n take the *discrete* values $a_1, ..., a_N$ then

$$P(x_n = a_{in} | x_{n-1} = a_{in-1}, ..., x_1 = a_{i1}) = P(x_n = a_{in} | x_{n-1} = a_{in-1})$$

and the sequence x_n is called a *Markov chain* of order 1.

Correlation of patterns

Preliminaries

Math or Mach?

Abstract

Markov sequence

Markov chain

Correlation of patterns

Example

Representation

Autocorrelation

Autocorrelation set

Example

Let's play a game

Sources

GF of languages

Declaring languages

Language relationships

Languages & GFs

Looking for GFs

Main findings I

On to other shores

Epilogue

A *correlation* of two patterns X (size m) and Y is a string, denoted by XY, over the set $\Omega = \{0, 1\}$.

$$|XY| = |X|$$

Each position *i* can be computed as

 $i=1\Leftrightarrow \mathsf{place}\ Y \ \mathsf{at}\ X_i \wedge \ \mathsf{all}\ \mathsf{overlapping}\ \mathsf{pairs}\ \mathsf{are}\ \mathsf{identical}$ else i=0

Example of pattern correlation

Preliminaries

Math or Mach?

Abstract

Markov sequence

Markov chain

Correlation of patterns

Example

Representation

Autocorrelation

Autocorrelation set

Example

Let's play a game

Sources

GF of languages

Declaring languages

Language relationships

Languages & GFs

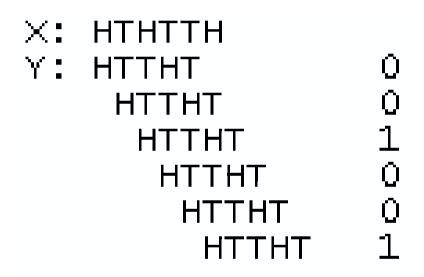
Looking for GFs

Main findings I

On to other shores

Epilogue

Let $\Omega = \{M, P\}$, X = MPMPPM and Y = MPPMP. Then XY can be deduced in the following manner:



whilst YX can be shown to equal 00010

Representation of the correlation

Preliminaries

Math or Mach?

Abstract

Markov sequence

Markov chain

Correlation of patterns

Example

Representation

Autocorrelation

Autocorrelation set

Example

Let's play a game

Sources

GF of languages

Declaring languages

Language relationships

Languages & GFs

Looking for GFs

Main findings I

On to other shores

Epilogue

Other representations of either string:

- 1. as a number in some base t. Thus, e.g. $XY_2 = 9$
- 2. as a polynomial. Thus, e.g. $XY_t = t^3 + 1$

Autocorrelation

Preliminaries

Math or Mach?

Abstract

Markov sequence

Markov chain

Correlation of patterns

Example

Representation

Autocorrelation

Autocorrelation set

Example

Let's play a game

Sources

GF of languages

Declaring languages

Language relationships

Languages & GFs

Looking for GFs

Main findings I

On to other shores

Epilogue

Furthermore, *autocorrelation* of X can be defined as XX.

It represents the periods of X, i.e. those shifts of X that cause that pattern to overlap itself.

Using Y = MPPMP from our previous example, YY evaluates to 10010

Using A = MMM, AA evaluates to 111

Autocorrelation set

Preliminaries

Math or Mach?

Abstract

Markov sequence

Markov chain

Correlation of patterns

Example

Representation

Autocorrelation

Autocorrelation set

Example

Let's play a game

Sources

GF of languages

Declaring languages

Language relationships

Languages & GFs

Looking for GFs

Main findings I

On to other shores

Epilogue

Given a string H, the autocorrelation set A_{HH} or just A is defined as

$$A_{HH} = \{H_{k+1}^m : H_1^k = H_{m-k+1}^m\}$$

Example of an autocorrelation set

Preliminaries

Math or Mach?

Abstract

Markov sequence

Markov chain

Correlation of patterns

Example

Representation

Autocorrelation

Autocorrelation set

Example

Let's play a game

Sources

GF of languages

Declaring languages

Language relationships

Languages & GFs

Looking for GFs

Main findings I

On to other shores

Epilogue

Let H = SOS

The autocorrelation reveals to be

$$HH = 101$$

whereas the autocorrelation set in that case is

$$A = \{\epsilon, 01\}$$

Preliminaries

- Math or Mach?
- Abstract
- Markov sequence
- Markov chain
- Correlation of patterns
- Example
- Representation
- Autocorrelation
- Autocorrelation set
- Example
- Let's play a game

Sources

GF of languages

Declaring languages

Language relationships

Languages & GFs

Looking for GFs

Main findings I

On to other shores

Epilogue

The Penny game - invented by Penney.

Preliminaries

Math or Mach?

Abstract

Markov sequence

Markov chain

Correlation of patterns

Example

Representation

Autocorrelation

Autocorrelation set

Example

● Let's play a game

Sources

GF of languages

Declaring languages

Language relationships

Languages & GFs

Looking for GFs

Main findings I

On to other shores

Epilogue

The Penny game - invented by Penney.

Each player chooses a pattern.

Preliminaries

- Math or Mach?
- Abstract
- Markov sequence
- Markov chain
- Correlation of patterns
- Example
- Representation
- Autocorrelation
- Autocorrelation set
- Example
- Let's play a game

Sources

GF of languages

Declaring languages

Language relationships

Languages & GFs

Looking for GFs

Main findings I

On to other shores

Epilogue

The Penny game - invented by Penney.

Each player chooses a pattern.

They then flip a coin until the pattern comes up consecutively.

Preliminaries

Math or Mach?

Abstract

Markov sequence

Markov chain

Correlation of patterns

Example

Representation

Autocorrelation

Autocorrelation set

Example

● Let's play a game

Sources

GF of languages

Declaring languages

Language relationships

Languages & GFs

Looking for GFs

Main findings I

On to other shores

Epilogue

The Penny game - invented by Penney.

Each player chooses a pattern.

They then flip a coin until the pattern comes up consecutively.

The player who chooses only one symbol (k times), has a chance to win of at least 0.5

Preliminaries

Math or Mach?

Abstract

Markov sequence

Markov chain

Correlation of patterns

Example

Representation

Autocorrelation

Autocorrelation set

Example

■ Let's play a game

Sources

GF of languages

Declaring languages

Language relationships

Languages & GFs

Looking for GFs

Main findings I

On to other shores

Epilogue

The Penny game - invented by Penney.

Each player chooses a pattern.

They then flip a coin until the pattern comes up consecutively.

The player who chooses only one symbol (k times), has a chance to win of at least 0.5

This is because of the "optimal" autocorrelation

Preliminaries

Sources

- Bernoulli
- Markovian Source (1)
- Markovian Source (2)
- Markovian Source (3)

GF of languages

Declaring languages

Language relationships

Languages & GFs

Looking for GFs

Main findings I

On to other shores

Epilogue

Sources

Bernoulli

Preliminaries

Sources

- Bernoulli
- Markovian Source (1)
- Markovian Source (2)
- Markovian Source (3)

GF of languages

Declaring languages

Language relationships

Languages & GFs

Looking for GFs

Main findings I

On to other shores

Epilogue

A *Bernoulli Source*, or *memoryless source*, generates text randomly.

Every subsequent symbol (of a finite alphabet) is created independently of its predecessors, and the probability of each symbol is not necesserily the same.

If it is, the Source is called a *symmetric*, or *unbiased* Bernoulli Source.

If text over an alphabet S is generated by a Bernoulli Source, then each symbol $s \in S$ always occurs with probability P(s).

Markovian Source (1)

Preliminaries

Sources

Bernoulli

Markovian Source (1)

- Markovian Source (2)
- Markovian Source (3)

GF of languages

Declaring languages

Language relationships

Languages & GFs

Looking for GFs

Main findings I

On to other shores

Epilogue

A *Markovian Source* generates symbols based not on the *a priori* probability of each symbol.

Instead, it only heeds a (finite) set of predecessors to ascertain the probability of each next symbol.

In order to do so, it requires a *memory* of previously emitted symbols.

Markovian Source (2)

Preliminaries

Sources

Bernoulli

Markovian Source (1)

Markovian Source (2)

Markovian Source (3)

GF of languages

Declaring languages

Language relationships

Languages & GFs

Looking for GFs

Main findings I

On to other shores

Epilogue

Text generated by a Markovian Source is a realization of a Markov sequence of order K.

K denotes the number of previous symbols that the probability of the next symbol depends on.

In our application, this sequence will be stationary and K=1, i.e. a first-order Markov sequence.

When computing the next symbol, we only need to observe the last symbol.

Markovian Source (3)

Preliminaries

Sources

- Bernoulli
- Markovian Source (1)
- Markovian Source (2)
- Markovian Source (3)

GF of languages

Declaring languages

Language relationships

Languages & GFs

Looking for GFs

Main findings I

On to other shores

Epilogue

In our case (K = 1), the transition matrix is defined by

$$P = \{p_{i,j}\}_{i,j \in S}$$

where

$$p_{i,j} = \text{Probability } (t_{k+1} = j | t_k = i)$$

The matrix entry (i, j) denotes the conditional probability of the next symbol being j if the current symbol is i.

Preliminaries

Sources

GF of languages

- What is a language
- Generating functions
- Generating functions, too
- GF of a language
- Conditional GF
- Example: GF
- Formulating our objective

Declaring languages

Language relationships

Languages & GFs

Looking for GFs

Main findings I

On to other shores

Epilogue

Generating functions of languages

What is a language, after all

Preliminaries

Sources

GF of languages

What is a language

- Generating functions
- Generating functions, too
- GF of a language
- Conditional GF
- Example: GF
- Formulating our objective

Declaring languages

Language relationships

Languages & GFs

Looking for GFs

Main findings I

On to other shores

Epilogue

A language L is a collection of words.

This collection must satisfy certain properties to belong to a specific language.

Thus, we can associate with a language L its generating function L(z).

Generating functions

Preliminaries

Sources

GF of languages

- What is a language
- Generating functions
- Generating functions, too
- GF of a language
- Conditional GF
- Example: GF
- Formulating our objective

Declaring languages

Language relationships

Languages & GFs

Looking for GFs

Main findings I

On to other shores

Epilogue

Given a sequence $\{a_n\}_{n\geq 0}$, we know its generating function is defined as

$$A(z) = \sum_{n \ge 0} a_n z^n$$

Generating functions, too

Preliminaries

Sources

GF of languages

- What is a language
- Generating functions

Generating functions, too

- GF of a language
- Conditional GF
- Example: GF
- Formulating our objective

Declaring languages

Language relationships

Languages & GFs

Looking for GFs

Main findings I

On to other shores

Epilogue

For sinister purposes, we represent it differently as

$$A(z) = \sum_{\alpha \in S} z^{w(\alpha)}$$

where S is a set of objects (words ...) and $w(\alpha)$ is a weight function.

Henceforth we will interpret it as the size of α , i.e. $w(\alpha) = |\alpha|$

The equivalence becomes evident when we set a_n to be the number of objects α satisfying $w(\alpha) = n$. Now we have a more combinatorial view

Generating function of a language

Preliminaries

Sources

GF of languages

- What is a language
- Generating functions
- Generating functions, too

GF of a language

- Conditional GF
- Example: GF
- Formulating our objective

Declaring languages

Language relationships

Languages & GFs

Looking for GFs

Main findings I

On to other shores

Epilogue

Now, for any language L, we define its generating function L(z) as

$$L(z) = \sum_{w \in L} P(w)z^{|w|}$$

where P(w) is the probability of word w's occurrence and |w| is the length of w.

So the coefficient of $z^{|w|}$ is the sum of the probabilites all words of that length.

In addition, we assume that $P(\epsilon) = 1$. So every language includes the empty word (as we know).

Conditional generating function

Preliminaries

Sources

GF of languages

- What is a language
- Generating functions
- Generating functions, too
- GF of a language

● Conditional GF

- Example: GF
- Formulating our objective

Declaring languages

Language relationships

Languages & GFs

Looking for GFs

Main findings I

On to other shores

Epilogue

In addition, the H-conditional generating function of L is given as

$$L_{H}(z) = \sum_{w \in L} P(w|w_{-m} = h_{1} \dots w_{-1} = h_{m}) z^{|w|}$$
$$= \sum_{w \in L} P(w|w_{-m}^{-1} = H) z^{|w|}$$

where w_{-i} is the symbol preceding the first character of w at

distance i.

We use this definition for Markovian sources, where the probability depends on the previous symbols.

Example: autocorrelation generating function

Preliminaries

Sources

GF of languages

- What is a language
- Generating functions
- Generating functions, too
- GF of a language
- Conditional GF

Example: GF

Formulating our objective

Declaring languages

Language relationships

Languages & GFs

Looking for GFs

Main findings I

On to other shores

Epilogue

In our previous example, the autocorrelation set was

$$A = \{\epsilon, 01\}$$

The generating function of the set is

$$A(z) = 1 + \frac{z^2}{4}$$

given a Bernoulli source, and

$$A_{SOS}(z) = 1 + p_{SO}p_{OS}z^2$$

given a Markovian source of order one.

Formulating our objective

Preliminaries

Sources

GF of languages

- What is a language
- Generating functions
- Generating functions, too
- GF of a language
- Conditional GF
- Example: GF
- Formulating our objective

Declaring languages

Language relationships

Languages & GFs

Looking for GFs

Main findings I

On to other shores

Epilogue

We will now formulate the special generating functions whose closed form we will later strive to compute:

1.
$$T^{(r)}(z) = \sum_{n \ge 0} Pr(O_n(H) = r)z^n$$

2.
$$T(z,u) = \sum_{r=1}^{\infty} T^{(r)}(z)u^r$$

$$= \sum_{r=1}^{\infty} \sum_{n=0}^{\infty} Pr(O_n(H) = r) z^n u^r$$

Preliminaries

Sources

GF of languages

Declaring languages

- Introduction
- Component languages

Language relationships

Languages & GFs

Looking for GFs

Main findings I

On to other shores

Epilogue

Declaring languages

Introduction

Preliminaries

Sources

GF of languages

Declaring languages

- Introduction
- Component languages

Language relationships

Languages & GFs

Looking for GFs

Main findings I

On to other shores

Epilogue

Let H be a given pattern.

- The *initial language* R is the set of words containing only **one** occurrence of H, located at the **right** end.
- The *tail language* U is defined as the set of words u such that Hu has exactly **one** occurrence of H, which occurs at the **left** end.
- The minimal language M is the set of words w such that Hw has exactly **two** occurrences of H, located at its **left** and **right** ends.

Component languages

Preliminaries

Sources

GF of languages

Declaring languages

Introduction

Component languages

Language relationships

Languages & GFs

Looking for GFs

Main findings I

On to other shores

Epilogue

We differentiate several special languages, given a pattern H. "·" stands for concatenation of words.

1.
$$R = \{r : r \in T_1 \land H \text{ occurs at the right end of } r\}$$

2.
$$U = \{u : H \cdot u \in T_1\}$$

3.
$$M = \{w : H \cdot w \in T_2 \land H \text{ occurs at the right end of } H \cdot w\}$$

Preliminaries

Sources

GF of languages

Declaring languages

Language relationships

- ullet Qualities of T_r
- ullet Composition proof $(T_{\mathcal{T}})$
- ullet Qualities of T
- ullet Composition proof (T)
- Four more relationships
- Four more relationships I (1)
- Four more relationships I (2)
- Four more relationships II
- Four more relationships III
- Four more relationships IV
- One more

Languages & GFs

Looking for GFs

Main findings I

On to other shores

Epilogue

Language relationships

Qualities of T_r

Preliminaries

Sources

GF of languages

Declaring languages

Language relationships

- ullet Qualities of T_{r}
- ullet Composition proof $(T_{oldsymbol{T}})$
- ullet Qualities of T
- ullet Composition proof (T)
- Four more relationships
- Four more relationships I (1)
- Four more relationships I (2)
- Four more relationships II
- Four more relationships III
- Four more relationships IV
- One more

Languages & GFs

Looking for GFs

Main findings I

On to other shores

Epilogue

At first, we will try to describe the languages T and T_r in terms of R, M and U:

$$\forall r \geq 1$$
:

$$T_r = R \cdot M^{r-1} \cdot U$$

Composition proof (T_r)

Preliminaries

Sources

GF of languages

Declaring languages

Language relationships

ullet Qualities of T_r

ullet Composition proof (T_r)

- ullet Qualities of T
- ullet Composition proof (T)
- Four more relationships
- Four more relationships I (1)
- Four more relationships I (2)
- Four more relationships II
- or our more relationships i
- Four more relationships III
- Four more relationships IV
- One more

Languages & GFs

Looking for GFs

Main findings I

On to other shores

Epilogue

Proof: First occurance of H in a T_r word determines the prefix

p

which is in R.

From that prefix on, we look onward until the next occurance of H.

The found word w is $\in M$.

After r-1 iterations, we add a H-devoid suffix, which is in U, because its prefix has H at the end.

Qualities of T

Preliminaries

Sources

GF of languages

Declaring languages

Language relationships

- ullet Qualities of T_{r}
- ullet Composition proof (T_r)

ullet Qualities of T

- ullet Composition proof (T)
- Four more relationships
- Four more relationships I (1)
- Four more relationships I (2)
- Four more relationships II
- Four more relationships III
- Four more relationships IV
- One more

Languages & GFs

Looking for GFs

Main findings I

On to other shores

Epilogue

The "extended" version of T_r , its words including an arbitrary number of H occurrences, can be composed similarly:

$$T = R \cdot M^* \cdot U$$

where
$$M^* := \bigcup_{r=0}^{\infty} M^r$$

Composition proof (T)

Preliminaries

Sources

GF of languages

Declaring languages

Language relationships

- ullet Qualities of T_{r}
- ullet Composition proof $(T_{m{T}})$
- ullet Qualities of T

ullet Composition proof (T)

- Four more relationships
- Four more relationships I (1)
- Four more relationships I (2)
- Four more relationships II
- Four more relationships III
- Four more relationships IV
- One more

Languages & GFs

Looking for GFs

Main findings I

On to other shores

Epilogue

Proof:

A word belongs to T, if for some $1 \le r < \infty$ it belongs to T_r .

As
$$\bigcup_{r=1}^{\infty} M^{r-1} = \bigcup_{r=0}^{\infty} M^r = M^*$$
, the assertion is proven.

Four more relationships

Preliminaries

Sources

GF of languages

Declaring languages

Language relationships

- ullet Qualities of T_r
- ullet Composition proof $(T_{\mathcal{T}})$
- ullet Qualities of T
- ullet Composition proof (T)

Four more relationships

- Four more relationships I (1)
- Four more relationships I (2)
- Four more relationships II
- Four more relationships III
- Four more relationships IV
- One more

Languages & GFs

Looking for GFs

Main findings I

On to other shores

Epilogue

Analyzing the relationships between M, U and R further, we introduce

- 1. W, the set of all words
- 2. *S*, the alphabet set
- 3. the operators "+" and "-", which denote disjoint union and language subtraction

Four more relationships I (1)

Preliminaries

Sources

GF of languages

Declaring languages

Language relationships

- ullet Qualities of T_{r}
- ullet Composition proof (T_r)
- ullet Qualities of T
- ullet Composition proof (T)
- Four more relationships

• Four more relationships I (1)

- Four more relationships I (2)
- Four more relationships II
- Four more relationships III
- Four more relationships IV
- One more

Languages & GFs

Looking for GFs

Main findings I

On to other shores

Epilogue

$$\bigcup_{k>1} M^k = W \cdot H + (A - \{e\})$$

Proof:

← :

Let k be the number how often H occurs in $W \cdot H$.

 $k \geq 1$.

The *last* occurrence of *H* in every included word is on the right.

That means, that $W \cdot H \subseteq \bigcup_{k>1} M^k$.

Four more relationships I (2)

Preliminaries

Sources

GF of languages

Declaring languages

Language relationships

- ullet Qualities of T_r
- ullet Composition proof $(T_{arGamma})$
- ullet Qualities of T
- ullet Composition proof (T)
- Four more relationships
- Four more relationships I (1)

• Four more relationships I (2)

- Four more relationships II
- Four more relationships III
- Four more relationships IV
- One more

Languages & GFs

Looking for GFs

Main findings I

On to other shores

Epilogue

 \longrightarrow

Let $w \in \bigcup_{k>1} M^k$.

Iff $|w| \geq |H|$, then surely the inclusion is correct.

Iff |w| < |H| (how can that be?), then $w \notin W \cdot H$.

But then, necessarily, $w \in A - \{\epsilon\}$, because the second H in Hw overlaps with the first H by definition (it is element of M^k), so w must be in the autocorrelation set A.

Four more relationships II

Preliminaries

Sources

GF of languages

Declaring languages

Language relationships

- ullet Qualities of T_r
- ullet Composition proof $(T_{\mathcal{T}})$
- ullet Qualities of T
- ullet Composition proof (T)
- Four more relationships
- Four more relationships I (1)
- Four more relationships I (2)

Four more relationships II

- Four more relationships III
- Four more relationships IV
- One more

Languages & GFs

Looking for GFs

Main findings I

On to other shores

Epilogue

$$U \cdot S = M + U - \{e\}$$

Proof:

All words of S consist of a single character s.

Given a word $u \in U$ and concatenating them, we differentiate two cases.

If Hus contains a second occurrence of H, it is clearly at the right end. Then $us \in M$.

If Hus does contain only a single H, then us must be non-empty word of U.

Four more relationships III

Preliminaries

Sources

GF of languages

Declaring languages

Language relationships

- ullet Qualities of T_r
- ullet Composition proof $(T_{\mathcal{T}})$
- ullet Qualities of T
- ullet Composition proof (T)
- Four more relationships
- Four more relationships I (1)
- Four more relationships I (2)
- Four more relationships II

• Four more relationships III

- Four more relationships IV
- One more

Languages & GFs

Looking for GFs

Main findings I

On to other shores

Epilogue

$$H \cdot M = S \cdot R - (R - H)$$

Proof:

 \longrightarrow .

Let sw be a word in $H \cdot M$, $s \in S$ (we can write every such word in this way WLOG).

sw contains exactly two times H, evidently at its left, and also at its right end.

Thus, sw is also $\in S \cdot R$

←:

If a word swH from $S \cdot R$ is not in R, then because it contains a second H starting at the left end of sw, because $wH \in R$. Of course, in that case it is $\in H \cdot M$.

Four more relationships IV

Preliminaries

Sources

GF of languages

Declaring languages

Language relationships

- ullet Qualities of T_{r}
- ullet Composition proof $(T_{arGamma})$
- Qualities of T
- ullet Composition proof (T)
- Four more relationships
- Four more relationships I (1)
- Four more relationships I (2)
- Four more relationships II
- Four more relationships III

• Four more relationships IV

One more

Languages & GFs

Looking for GFs

Main findings I

On to other shores

Epilogue

$$T_0 \cdot H = R \cdot A$$

Proof:

Let wH be $\in T_0 \cdot H$. Then there can be either be one or more occurrences of H in wH, one of which is at the right end.

If there is no second one, then wH is $\in R$ by definition of R

If, however, there is a second one, then it overlaps somehow with the first one.

So we view the word until the end of the *first* H, which is in R. Due to the overlapping, the remaining part is $\in A$.

One more

Preliminaries

Sources

GF of languages

Declaring languages

Language relationships

- ullet Qualities of T_r
- ullet Composition proof (T_r)
- ullet Qualities of T
- ullet Composition proof (T)
- Four more relationships
- Four more relationships I (1)
- Four more relationships I (2)
- Four more relationships II
- Four more relationships III
- Four more relationships IV

One more

Languages & GFs

Looking for GFs

Main findings I

On to other shores

Epilogue

Combining relationships II and III yields

$$H \cdot U \cdot S - H \cdot U = (S - \epsilon)R$$

No proof is necessary, as we have validated both ingredients.

Using II, the left side is $H(U \cdot S - U) = H \cdot M$

The right side is

$$S \cdot R - R$$

$$= S \cdot R - (R \cap S \cdot R)$$

$$= S \cdot R - (R - H)$$

Together, that is just relationship III.

Preliminaries

Sources

GF of languages

Declaring languages

Language relationships

Languages & GFs

- In the Bernoulli env. (1)
- In the Bernoulli env. (2)
- "Particularities"

Looking for GFs

Main findings I

On to other shores

Epilogue

Languages & Generating Functions

Preliminaries

Sources

GF of languages

Declaring languages

Language relationships

Languages & GFs

• In the Bernoulli env. (1)

- In the Bernoulli env. (2)
- "Particularities"

Looking for GFs

Main findings I

On to other shores

Epilogue

We will now transcend from languages to their generating functions.

Given any language L_1 , we know its generating function to be

$$A_1(z) = \sum_{w \in L_1} P(w) z^{|w|}$$

Preliminaries

Sources

GF of languages

Declaring languages

Language relationships

Languages & GFs

• In the Bernoulli env. (1)

• In the Bernoulli env. (2)

"Particularities"

Looking for GFs

Main findings I

On to other shores

Epilogue

So what is the the result of multiplying two languages (i.e. concatenating them) in respect to their gen. func.? What is $L_3 = L_1 \cdot L_2$?

 $A_3(z)$

Preliminaries

Sources

GF of languages

Declaring languages

Language relationships

Languages & GFs

● In the Bernoulli env. (1)

• In the Bernoulli env. (2)

"Particularities"

Looking for GFs

Main findings I

On to other shores

Epilogue

So what is the tresult of multiplying two languages (i.e. concatenating them) in respect to their gen. func.? What is $L_3 = L_1 \cdot L_2$?

$$A_3(z) = \sum_{w \in L_3} P(w) z^{|w|}$$

Preliminaries

Sources

GF of languages

Declaring languages

Language relationships

Languages & GFs

• In the Bernoulli env. (1)

• In the Bernoulli env. (2)

"Particularities"

Looking for GFs

Main findings I

On to other shores

Epilogue

So what is the result of multiplying two languages (i.e. concatenating them) in respect to their gen. func.? What is

$$L_3 = L_1 \cdot L_2$$
?

$$A_3(z)$$

$$= \sum_{w \in L_3} P(w)z^{|w|}$$

$$= \sum_{w \in L_1 \land w \in L_2} P(w_1)P(w_2)z^{|w_1|+|w_2|}$$

Preliminaries

Sources

GF of languages

Declaring languages

Language relationships

Languages & GFs

• In the Bernoulli env. (1)

• In the Bernoulli env. (2)

"Particularities"

Looking for GFs

Main findings I

On to other shores

Epilogue

So what is the result of multiplying two languages (i.e. concatenating them) in respect to their gen. func.? What is

$$L_3 = L_1 \cdot L_2$$
?

$$A_3(z)$$

$$= \sum_{w \in L_3} P(w)z^{|w|}$$

$$= \sum_{w \in L_1 \land w \in L_2} P(w_1)P(w_2)z^{|w_1|+|w_2|}$$

$$= \sum_{w \in L_1} P(w_1)z^{|w_1|} \sum_{w \in L_2} P(w_2)z^{|w_2|}$$

Preliminaries

Sources

GF of languages

Declaring languages

Language relationships

Languages & GFs

• In the Bernoulli env. (1)

● In the Bernoulli env. (2)

"Particularities"

Looking for GFs

Main findings I

On to other shores

Epilogue

So what is the the result of multiplying two languages (i.e. concatenating them) in respect to their gen. func.? What is

$$L_3 = L_1 \cdot L_2$$
?

$$A_{3}(z)$$

$$= \sum_{w \in L_{3}} P(w)z^{|w|}$$

$$= \sum_{w \in L_{1} \land w \in L_{2}} P(w_{1})P(w_{2})z^{|w_{1}|+|w_{2}|}$$

$$= \sum_{w \in L_{1}} P(w_{1})z^{|w_{1}|} \sum_{w \in L_{2}} P(w_{2})z^{|w_{2}|}$$

$$= A_{1}(z)A_{2}(z)$$

Preliminaries

Sources

GF of languages

Declaring languages

Language relationships

Languages & GFs

• In the Bernoulli env. (1)

• In the Bernoulli env. (2)

"Particularities"

Looking for GFs

Main findings I

On to other shores

Epilogue

So what is the the result of multiplying two languages (i.e. concatenating them) in respect to their gen. func.? What is $L_3 = L_1 \cdot L_2$?

$$A_3(z)$$

$$= \sum_{w \in L_3} P(w)z^{|w|}$$

$$= \sum_{w \in L_1 \land w \in L_2} P(w_1)P(w_2)z^{|w_1|+|w_2|}$$

$$= \sum_{w \in L_1 \land w \in L_2} P(w_1)z^{|w_1|} \sum_{w \in L_2} P(w_2)z^{|w_2|}$$

! The assumption P(wv) = P(w)P(v) only holds true with a memoryless source.

 $w \in L_1$ $w \in L_2$

 $= A_1(z)A_2(z)$

Preliminaries

Sources

GF of languages

Declaring languages

Language relationships

Languages & GFs

- In the Bernoulli env. (1)
- In the Bernoulli env. (2)

"Particularities"

Looking for GFs

Main findings I

On to other shores

Epilogue

A few particular cases:

■ S (alphabet set) $\Rightarrow S(z) = \sum_{s \in S} P(s)z^{|s|} = z$

Preliminaries

Sources

GF of languages

Declaring languages

Language relationships

Languages & GFs

- In the Bernoulli env. (1)
- In the Bernoulli env. (2)

"Particularities"

Looking for GFs

Main findings I

On to other shores

Epilogue

- S (alphabet set) $\Rightarrow S(z) = \sum_{s \in S} P(s)z^{|s|} = z$
- $\blacksquare L = S \cdot L_1 \Rightarrow L(z) = zL_1(z)$

Preliminaries

Sources

GF of languages

Declaring languages

Language relationships

Languages & GFs

- In the Bernoulli env. (1)
- In the Bernoulli env. (2)

"Particularities"

Looking for GFs

Main findings I

On to other shores

Epilogue

- S (alphabet set) $\Rightarrow S(z) = \sum_{s \in S} P(s)z^{|s|} = z$
- $\blacksquare L = S \cdot L_1 \Rightarrow L(z) = zL_1(z)$
- $\blacksquare \{\epsilon\} \Rightarrow E(z) = \sum_{w \in \{\epsilon\}} P(w) z^{|w|} = 1 \cdot 1 = 1$

Preliminaries

Sources

GF of languages

Declaring languages

Language relationships

Languages & GFs

- In the Bernoulli env. (1)
- In the Bernoulli env. (2)

"Particularities"

Looking for GFs

Main findings I

On to other shores

Epilogue

- S (alphabet set) $\Rightarrow S(z) = \sum_{s \in S} P(s)z^{|s|} = z$
- $\blacksquare L = S \cdot L_1 \Rightarrow L(z) = zL_1(z)$
- $\blacksquare \{\epsilon\} \Rightarrow E(z) = \sum_{w \in \{\epsilon\}} P(w) z^{|w|} = 1 \cdot 1 = 1$
- $\blacksquare H \Rightarrow H(z) = \sum_{w=H} P(H)z^{|H|} = P(H)z^m$

Preliminaries

Sources

GF of languages

Declaring languages

Language relationships

Languages & GFs

- In the Bernoulli env. (1)
- In the Bernoulli env. (2)
- "Particularities"

Looking for GFs

Main findings I

On to other shores

Epilogue

- S (alphabet set) $\Rightarrow S(z) = \sum_{s \in S} P(s)z^{|s|} = z$
- $\blacksquare L = S \cdot L_1 \Rightarrow L(z) = zL_1(z)$
- $\blacksquare \{\epsilon\} \Rightarrow E(z) = \sum_{w \in \{\epsilon\}} P(w)z^{|w|} = 1 \cdot 1 = 1$
- $\blacksquare H \Rightarrow H(z) = \sum_{w=H} P(H)z^{|H|} = P(H)z^m$
- W (behold, the set of *all* words)

$$\Rightarrow W(z) = \sum P(w)z^{|k|} = \sum_{k>0} z^k = \frac{1}{1-z}$$

Preliminaries

Sources

GF of languages

Declaring languages

Language relationships

Languages & GFs

Looking for GFs

- Translating I
- Translating II
- Translating III

Main findings I

On to other shores

Epilogue

Looking for Generating Functions

Preliminaries

Sources

GF of languages

Declaring languages

Language relationships

Languages & GFs

Looking for GFs

- Translating I
- Translating II
- Translating III

Main findings I

On to other shores

Epilogue

$$\bigcup_{k>1} M^k = W \cdot H + (A - \{e\})$$

Preliminaries

Sources

GF of languages

Declaring languages

Language relationships

Languages & GFs

Looking for GFs

- Translating I
- Translating II
- Translating III

Main findings I

On to other shores

Epilogue

$$\bigcup_{k\geq 1} M^k = W \cdot H + (A - \{e\})$$

$$\sum_{k=1}^{\infty} M_H(z)^k = W(z) \cdot P(H)z^m + A_H(z) - 1$$

Preliminaries

Sources

GF of languages

Declaring languages

Language relationships

Languages & GFs

Looking for GFs

- Translating I
- Translating II
- Translating III

Main findings I

On to other shores

Epilogue

$$\bigcup_{k>1} M^k = W \cdot H + (A - \{e\})$$

$$\sum_{k=1}^{\infty} M_H(z)^k = W(z) \cdot P(H)z^m + A_H(z) - 1$$

$$\sum_{k=0}^{\infty} M_H(z)^k - 1 = \frac{1}{1-z} \cdot P(H)z^m + A_H(z) - 1$$

Preliminaries

Sources

GF of languages

Declaring languages

Language relationships

Languages & GFs

Looking for GFs

- Translating I
- Translating II
- Translating III

Main findings I

On to other shores

Epilogue

$$\bigcup_{k>1} M^k = W \cdot H + (A - \{e\})$$

$$\sum_{k=1}^{\infty} M_H(z)^k = W(z) \cdot P(H)z^m + A_H(z) - 1$$

$$\sum_{k=0}^{\infty} M_H(z)^k - 1 = \frac{1}{1-z} \cdot P(H)z^m + A_H(z) - 1$$

$$\frac{1}{1 - M_H(z)} = \frac{1}{1 - z} \cdot P(H)z^m + A_H(z)$$

Preliminaries

Sources

GF of languages

Declaring languages

Language relationships

Languages & GFs

Looking for GFs

- Translating I
- Translating II
- Translating III

Main findings I

On to other shores

$$U \cdot S = M + U - \{e\}$$

Preliminaries

Sources

GF of languages

Declaring languages

Language relationships

Languages & GFs

Looking for GFs

- Translating I
- Translating II
- Translating III

Main findings I

On to other shores

$$U \cdot S = M + U - \{e\}$$
$$U \cdot S - U = M - \{e\}$$

Preliminaries

Sources

GF of languages

Declaring languages

Language relationships

Languages & GFs

Looking for GFs

Translating I

Translating II

Translating III

Main findings I

On to other shores

$$U \cdot S = M + U - \{e\}$$

$$U \cdot S - U = M - \{e\}$$

$$U_H(z)z - U_H(z) = M_H(z) - 1$$

Preliminaries

Sources

GF of languages

Declaring languages

Language relationships

Languages & GFs

Looking for GFs

- Translating I
- Translating II
- Translating III

Main findings I

On to other shores

$$U \cdot S = M + U - \{e\}$$
 $U \cdot S - U = M - \{e\}$
 $U_H(z)z - U_H(z) = M_H(z) - 1$
 $U_H(z)(z - 1) = M_H(z) - 1$

Preliminaries

Sources

GF of languages

Declaring languages

Language relationships

Languages & GFs

Looking for GFs

- Translating I
- Translating II
- Translating III

Main findings I

On to other shores

$$U \cdot S = M + U - \{e\}$$

$$U \cdot S - U = M - \{e\}$$

$$U_H(z)z - U_H(z) = M_H(z) - 1$$

$$U_H(z)(z - 1) = M_H(z) - 1$$

$$U_H(z) = \frac{M_H(z) - 1}{(z - 1)}$$

Preliminaries

Sources

GF of languages

Declaring languages

Language relationships

Languages & GFs

Looking for GFs

- Translating I
- Translating II
- Translating III

Main findings I

On to other shores

$$H \cdot M = S \cdot R - (R - H)$$

Preliminaries

Sources

GF of languages

Declaring languages

Language relationships

Languages & GFs

Looking for GFs

- Translating I
- Translating II
- Translating III

Main findings I

On to other shores

$$H \cdot M = S \cdot R - (R - H)$$

$$H \cdot M - H = S \cdot R - R$$

Preliminaries

Sources

GF of languages

Declaring languages

Language relationships

Languages & GFs

Looking for GFs

- Translating I
- Translating II
- Translating III

Main findings I

On to other shores

$$H \cdot M = S \cdot R - (R - H)$$

$$H \cdot M - H = S \cdot R - R$$

$$P(H)z^{m}M_{H}(z) - P(H)z^{m} = S(z) \cdot R(z) - R(z)$$

Preliminaries

Sources

GF of languages

Declaring languages

Language relationships

Languages & GFs

Looking for GFs

- Translating I
- Translating II
- Translating III

Main findings I

On to other shores

$$H \cdot M = S \cdot R - (R - H)$$

$$H \cdot M - H = S \cdot R - R$$

$$P(H)z^{m}M_{H}(z) - P(H)z^{m} = S(z) \cdot R(z) - R(z)$$

$$P(H)z^{m}(M_{H}(z) - 1) = R(z)(z - 1)$$

Translating III

Preliminaries

Sources

GF of languages

Declaring languages

Language relationships

Languages & GFs

Looking for GFs

- Translating I
- Translating II
- Translating III

Main findings I

On to other shores

$$H \cdot M = S \cdot R - (R - H)$$

$$H \cdot M - H = S \cdot R - R$$

$$P(H)z^{m}M_{H}(z) - P(H)z^{m} = S(z) \cdot R(z) - R(z)$$

$$P(H)z^{m}(M_{H}(z) - 1) = R(z)(z - 1)$$

$$R(z) = P(H)z^{m} \frac{M_{H}(z) - 1}{z - 1}$$

Translating III

Preliminaries

Sources

GF of languages

Declaring languages

Language relationships

Languages & GFs

Looking for GFs

- Translating I
- Translating IITranslating III

Main findings I

On to other shores

$$H \cdot M = S \cdot R - (R - H)$$

$$H \cdot M - H = S \cdot R - R$$

$$P(H)z^{m}M_{H}(z) - P(H)z^{m} = S(z) \cdot R(z) - R(z)$$

$$P(H)z^{m}(M_{H}(z) - 1) = R(z)(z - 1)$$

$$R(z) = P(H)z^{m}\frac{M_{H}(z) - 1}{z - 1}$$

$$R(z) = P(H)z^{m}U_{H}(z)$$

Sources

GF of languages

Declaring languages

Language relationships

Languages & GFs

Looking for GFs

Main findings I

- $\bullet T^{(r)}(z)$
- $\bullet T(z, u)$

On to other shores

Epilogue

Main findings I

$$T^{(r)}(z)$$

Sources

GF of languages

Declaring languages

Language relationships

Languages & GFs

Looking for GFs

Main findings I

 $\bullet T(z, u)$

On to other shores

Epilogue

We remember, that for $r \geq 1$

$$T_r = R \cdot M^{r-1} \cdot U$$

We have now gleaned every component, and can translate it (for $r \geq 1$) into

$$T^{(r)}(z) = R(z)M^{r-1}(z)U_H(z)$$

Sources

GF of languages

Declaring languages

Language relationships

Languages & GFs

Looking for GFs

Main findings I

 $\bullet T^{(r)}(z)$

On to other shores

Epilogue

We do also remember, that

$$T = R \cdot M^* \cdot U$$

As T is the language with *any* number of Hs, its generating function is indeed ...

$$T(z,u) = R(z) \frac{u}{1 - uM_H(z)} U_H(z)$$

Sources

GF of languages

Declaring languages

Language relationships

Languages & GFs

Looking for GFs

Main findings I

On to other shores

- What is left to do?
- Using derivatives
- Proof Preparations
- Closed form formula (1)
- Closed form formula (2)
- Main findings II

Epilogue

On to other shores

What is left to do?

Preliminaries

Sources

GF of languages

Declaring languages

Language relationships

Languages & GFs

Looking for GFs

Main findings I

On to other shores

• What is left to do?

- Using derivatives
- Proof Preparations
- Closed form formula (1)
- Closed form formula (2)
- Main findings II

Epilogue

We still have no formula of gathering $O_n(H)$, i.e. the frequency of H-occurrences (|H|=m) in random text of length n over an alphabet S with |S| = V.

Let us make an educated guess, though. What we do not know, is how important *overlapping* is. Assuming to disregard that topic, the answer *could* be

$$E[O_n(H)] = P(H)(n - m + 1)$$

It is.

But why?

Using derivatives

Preliminaries

Sources

GF of languages

Declaring languages

Language relationships

Languages & GFs

Looking for GFs

Main findings I

On to other shores

- What is left to do?
- Using derivatives
- Proof Preparations
- Closed form formula (1)
- Closed form formula (2)
- Main findings II

Epilogue

Looking at our bivariate generating function of T,

$$T(z,u) = \sum_{r=1}^{\infty} \sum_{n=0}^{\infty} Pr(O_n(H) = r) z^n u^r$$

we notice that we would like the two sums to be reversed.

Using derivatives

Preliminaries

Sources

GF of languages

Declaring languages

Language relationships

Languages & GFs

Looking for GFs

Main findings I

On to other shores

- What is left to do?
- Using derivatives
- Proof Preparations
- Closed form formula (1)
- Closed form formula (2)
- Main findings II

Epilogue

Looking at our bivariate generating function of T,

$$T(z,u) = \sum_{r=1}^{\infty} \sum_{n=0}^{\infty} Pr(O_n(H) = r) z^n u^r$$

we notice that we would like the two sums to be reversed. Deriving it after $u \dots$

$$T_u(z, u) = \sum_{r=1}^{\infty} \sum_{n=0}^{\infty} Pr(O_n(H) = r) z^n r$$
 (=#Occ) u^{r-1}

Using derivatives

Preliminaries

Sources

GF of languages

Declaring languages

Language relationships

Languages & GFs

Looking for GFs

Main findings I

On to other shores

- What is left to do?
- Using derivatives
- Proof Preparations
- Closed form formula (1)
- Closed form formula (2)
- Main findings II

Epilogue

Looking at our bivariate generating function of T,

$$T(z,u) = \sum_{r=1}^{\infty} \sum_{n=0}^{\infty} Pr(O_n(H) = r) z^n u^r$$

we notice that we would like the two sums to be reversed. Deriving it after $u \dots$

$$T_u(z,u) = \sum_{r=1}^{\infty} \sum_{n=0}^{\infty} Pr(O_n(H) = r) z^n r$$
 (=#Occ) u^{r-1}

 \dots and setting u to 1 leads to \dots

$$T_u(z,1) = \sum_{n=0}^{\infty} (\sum_{r=1}^{\infty} Pr(O_n(H)r)z^n$$

Preliminaries

Sources

GF of languages

Declaring languages

Language relationships

Languages & GFs

Looking for GFs

Main findings I

On to other shores

- What is left to do?
- Using derivatives
- Proof Preparations
- Closed form formula (1)
- Closed form formula (2)
- Main findings II
- Epilogue

To shorten things, we introduce

$$D_H(z) = (1-z)A_H(z) + z^m P(H)$$

Preliminaries

Sources

GF of languages

Declaring languages

Language relationships

Languages & GFs

Looking for GFs

Main findings I

On to other shores

- What is left to do?
- Using derivatives

Proof Preparations

- Closed form formula (1)
- Closed form formula (2)
- Main findings II

Epilogue

To shorten things, we introduce

$$D_H(z) = (1-z)A_H(z) + z^m P(H)$$

and rewrite $M_H(z)$ as

$$M_H(z) = 1 + \frac{z - 1}{D_H(z)}$$

Preliminaries

Sources

GF of languages

Declaring languages

Language relationships

Languages & GFs

Looking for GFs

Main findings I

On to other shores

- What is left to do?
- Using derivatives

Proof Preparations

- Closed form formula (1)
- Closed form formula (2)
- Main findings II

Epilogue

To shorten things, we introduce

$$D_H(z) = (1-z)A_H(z) + z^m P(H)$$

and rewrite $M_H(z)$ as

$$M_H(z) = 1 + \frac{z - 1}{D_H(z)}$$

as well as

$$U_H(z) = \frac{1}{D_H(z)}$$

Preliminaries

Sources

GF of languages

Declaring languages

Language relationships

Languages & GFs

Looking for GFs

Main findings I

On to other shores

- What is left to do?
- Using derivatives
- Proof Preparations
- Closed form formula (1)
- Closed form formula (2)
- Main findings II

Epilogue

To shorten things, we introduce

$$D_H(z) = (1-z)A_H(z) + z^m P(H)$$

and rewrite $M_H(z)$ as

$$M_H(z) = 1 + \frac{z - 1}{D_H(z)}$$

as well as

$$U_H(z) = \frac{1}{D_H(z)}$$

and

$$R(z) = z^m P(H) \frac{1}{D_H(z)}$$

Preliminaries

Sources

GF of languages

Declaring languages

Language relationships

Languages & GFs

Looking for GFs

Main findings I

On to other shores

- What is left to do?
- Using derivatives
- Proof Preparations

Closed form formula (1)

- Closed form formula (2)
- Main findings II

Epilogue

 $T_u(z,u)$

Preliminaries

Sources

GF of languages

Declaring languages

Language relationships

Languages & GFs

Looking for GFs

Main findings I

On to other shores

- What is left to do?
- Using derivatives
- Proof Preparations

Closed form formula (1)

- Closed form formula (2)
- Main findings II

$$T_u(z, u) = R(z)U_H(z)\frac{u}{(1 - uM_H)}\frac{d}{du}$$

Preliminaries

Sources

GF of languages

Declaring languages

Language relationships

Languages & GFs

Looking for GFs

Main findings I

On to other shores

- What is left to do?
- Using derivatives
- Proof Preparations

Closed form formula (1)

- Closed form formula (2)
- Main findings II

$$T_{u}(z, u)$$

$$= R(z)U_{H}(z) \frac{u}{(1 - uM_{H})} \frac{d}{du}$$

$$= R(z)U_{H}(z) \frac{(1 - uM) + uM}{(1 - uM_{H})^{2}}$$

Preliminaries

Sources

GF of languages

Declaring languages

Language relationships

Languages & GFs

Looking for GFs

Main findings I

On to other shores

- What is left to do?
- Using derivatives
- Proof Preparations

Closed form formula (1)

- Closed form formula (2)
- Main findings II

$$T_{u}(z, u)$$

$$= R(z)U_{H}(z) \frac{u}{(1 - uM_{H})} \frac{d}{du}$$

$$= R(z)U_{H}(z) \frac{(1 - uM) + uM}{(1 - uM_{H})^{2}}$$

$$= R(z)U_{H}(z) \frac{1}{(1 - uM_{H})^{2}}$$

Preliminaries

Sources

GF of languages

Declaring languages

Language relationships

Languages & GFs

Looking for GFs

Main findings I

On to other shores

- What is left to do?
- Using derivatives
- Proof Preparations
- Closed form formula (1)
- Closed form formula (2)

Main findings II

Epilogue

$$T_u(z,1)$$

Preliminaries

Sources

GF of languages

Declaring languages

Language relationships

Languages & GFs

Looking for GFs

Main findings I

On to other shores

- What is left to do?
- Using derivatives
- Proof Preparations
- Closed form formula (1)
- Closed form formula (2)

S Ciosca ioiiii ioiiiiai

Main findings II

Epilogue

$$T_u(z,1)$$

$$= R(z)U_H(z)\frac{1}{(1-M_H)^2}$$

Preliminaries

Sources

GF of languages

Declaring languages

Language relationships

Languages & GFs

Looking for GFs

Main findings I

On to other shores

- What is left to do?
- Using derivatives
- Proof Preparations
- Closed form formula (1)

Closed form formula (2)

Main findings II

Epilogue

$$T_{u}(z,1)$$

$$= R(z)U_{H}(z)\frac{1}{(1-M_{H})^{2}}$$

$$= R(z)U_{H}(z)(1-1+\frac{z-1}{D_{H}(z)})^{-2}$$

Preliminaries

Sources

GF of languages

Declaring languages

Language relationships

Languages & GFs

Looking for GFs

Main findings I

On to other shores

- What is left to do?
- Using derivatives
- Proof Preparations
- Closed form formula (1)
- Closed form formula (2)

Main findings II

Epilogue

$$T_{u}(z,1)$$

$$= R(z)U_{H}(z)\frac{1}{(1-M_{H})^{2}}$$

$$= R(z)U_{H}(z)(1-1+\frac{z-1}{D_{H}(z)})^{-2}$$

$$= R(z)U_{H}(z)\frac{D_{H}(z)^{2}}{(z-1)^{2}}$$

Preliminaries

Sources

GF of languages

Declaring languages

Language relationships

Languages & GFs

Looking for GFs

Main findings I

On to other shores

- What is left to do?
- Using derivatives
- Proof Preparations
- Closed form formula (1)

Closed form formula (2)

Main findings II

Epilogue

$$T_{u}(z,1)$$

$$= R(z)U_{H}(z)\frac{1}{(1-M_{H})^{2}}$$

$$= R(z)U_{H}(z)(1-1+\frac{z-1}{D_{H}(z)})^{-2}$$

$$= R(z)U_{H}(z)\frac{D_{H}(z)^{2}}{(z-1)^{2}}$$

$$= R(z)\frac{1}{D_{H}(z)}\frac{D_{H}(z)^{2}}{(z-1)^{2}}$$

Preliminaries

Sources

GF of languages

Declaring languages

Language relationships

Languages & GFs

Looking for GFs

Main findings I

On to other shores

- What is left to do?
- Using derivatives
- Proof Preparations
- Closed form formula (1)
- Closed form formula (2)

Main findings II

Epilogue

$$T_{u}(z,1)$$

$$= R(z)U_{H}(z)\frac{1}{(1-M_{H})^{2}}$$

$$= R(z)U_{H}(z)(1-1+\frac{z-1}{D_{H}(z)})^{-2}$$

$$= R(z)U_{H}(z)\frac{D_{H}(z)^{2}}{(z-1)^{2}}$$

$$= R(z)\frac{1}{D_{H}(z)}\frac{D_{H}(z)^{2}}{(z-1)^{2}}$$

$$= z^{m}P(H)\frac{1}{D_{H}(z)}\frac{D_{H}(z)}{(z-1)^{2}}$$

Preliminaries

Sources

GF of languages

Declaring languages

Language relationships

Languages & GFs

Looking for GFs

Main findings I

On to other shores

- What is left to do?
- Using derivatives
- Proof Preparations
- Closed form formula (1)
- Closed form formula (2)

Main findings II

3

Epilogue

$$T_{u}(z,1)$$

$$= R(z)U_{H}(z)\frac{1}{(1-M_{H})^{2}}$$

$$= R(z)U_{H}(z)(1-1+\frac{z-1}{D_{H}(z)})^{-2}$$

$$= R(z)U_{H}(z)\frac{D_{H}(z)^{2}}{(z-1)^{2}}$$

$$= R(z)\frac{1}{D_{H}(z)}\frac{D_{H}(z)^{2}}{(z-1)^{2}}$$

$$= z^{m}P(H)\frac{1}{D_{H}(z)}\frac{D_{H}(z)}{(z-1)^{2}}$$

$$= \frac{z^{m}P(H)}{(z-1)^{2}}$$

Preliminaries

Sources

GF of languages

Declaring languages

Language relationships

Languages & GFs

Looking for GFs

Main findings I

On to other shores

- What is left to do?
- Using derivatives
- Proof Preparations
- Closed form formula (1)
- Closed form formula (2)
- Main findings II

Epilogue

As the text has length n, we are extracting the nth coefficient of $T_u(z,1)$, and $voil\grave{a}$

$$E[O_n] = [z^n]T_u(z,1)$$

Preliminaries

Sources

GF of languages

Declaring languages

Language relationships

Languages & GFs

Looking for GFs

Main findings I

On to other shores

- What is left to do?
- Using derivatives
- Proof Preparations
- Closed form formula (1)
- Closed form formula (2)

Main findings II

Epilogue

As the text has length n, we are extracting the nth coefficient of $T_u(z,1)$, and $voil\grave{a}$

$$E[O_n] = [z^n]T_u(z, 1)$$

= $P(H)[z^n]z^m(1-z)^{-2}$

Preliminaries

Sources

GF of languages

Declaring languages

Language relationships

Languages & GFs

Looking for GFs

Main findings I

On to other shores

- What is left to do?
- Using derivatives
- Proof Preparations
- Closed form formula (1)
- Closed form formula (2)

Main findings II

Epilogue

As the text has length n, we are extracting the nth coefficient of $T_u(z,1)$, and $voil\grave{a}$

$$E[O_n] = [z^n] T_u(z, 1)$$

$$= P(H)[z^n] z^m (1 - z)^{-2}$$

$$= P(H)[z^{n-m}] (1 - z)^{-2}$$

Preliminaries

Sources

GF of languages

Declaring languages

Language relationships

Languages & GFs

Looking for GFs

Main findings I

On to other shores

- What is left to do?
- Using derivatives
- Proof Preparations
- Closed form formula (1)
- Closed form formula (2)
- Main findings II

Epilogue

As the text has length n, we are extracting the nth coefficient of $T_u(z, 1)$, and $voil\grave{a}$

$$E[O_n] = [z^n] T_u(z, 1)$$

$$= P(H)[z^n] z^m (1 - z)^{-2}$$

$$= P(H)[z^{n-m}] (1 - z)^{-2}$$

$$= (n - m + 1) P(H)$$

Sources

GF of languages

Declaring languages

Language relationships

Languages & GFs

Looking for GFs

Main findings I

On to other shores

Epilogue

• Questions?

Questions?

Preliminaries

Sources

GF of languages

Declaring languages

Language relationships

Languages & GFs

Looking for GFs

Main findings I

On to other shores

Epilogue

• Questions?

"O, call not me to justify the wrong
That thy unkindness lays upon my heart;
Wound me not with thine eye but with thy tongue;
Use power with power and slay me not by art.
What need'st thou wound with cunning when thy might
Is more than my o'er-press'd defense can bide?
That they elsewhere might dart their injuries:
Yet do not so; but since I am near slain,
Kill me outright with looks and rid my pain."
Shakespeare Sonnet CXXXIX

With what certainty (1)

Preliminaries

Sources

GF of languages

Declaring languages

Language relationships

Languages & GFs

Looking for GFs

Main findings I

On to other shores

Epilogue

• Questions?

the variance of $E(O_n(H))$ is, for a r > 1:

$$Var[O_n(H)] = nc_1 + c_2 + O(r^{-n})$$

where

$$c_1 = P(H)(2A_H(1) - 1 - (2m - 1)P(H) + 2P(H)E_1)$$

$$c_2 = P(H)((m-1)(3m-1)P(H) - (m-1)$$

$$(2A_H(1) - 1) - 2A'_H(1)) - 2(2m-1)$$

$$(P(H)^2 E_1 + 2E_2 P(H)^2$$

With what certainty (2)

Preliminaries

Sources

GF of languages

Declaring languages

Language relationships

Languages & GFs

Looking for GFs

Main findings I

On to other shores

Epilogue

• Questions?

where E_1 , E_2 are

$$E_1 = \frac{1}{\pi_{h_1}} [(P - \Pi)Z]_{h_m, h_1}$$

$$E_1 = \frac{1}{\pi_{h_1}} [(P - \Pi)Z]_{h_m, h_1}$$

$$E_2 = \frac{1}{\pi_{h_1}} [(P^2 - \Pi)Z^2]_{h_m, h_1}$$

Simplification

Preliminaries

Sources

GF of languages

Declaring languages

Language relationships

Languages & GFs

Looking for GFs

Main findings I

On to other shores

Epilogue

• Questions?

Luckily (...), for a *memoryless source*, both constants E are void, as P is then equal to Π . So in that, we have

$$c_1 = P(H)(2A(1) - 1 - (2m - 1)P(H)))$$

$$c_2 = P(H)((m-1)(3m-1)P(H) - (m-1)(2A(1)-1) - 2A'(1))$$